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Abstract. Two efficient clustering-based genetic algorithms are developed for
the optimisation of reaction rate parameters in chemical kinetic modelling. The
genetic algorithms employed are used to determine new reaction rate coeffi-
cients for the combustion of four different fuel/air mixtures in a perfectly
stirred reactor (PSR). The incorporation of clustering into the genetic algorithm
allows for a considerable reduction in the number of computationally expensive
fitness evaluations to be realised without any loss in performance. At each gen-
eration, the individuals are clustered into several groups and then only the indi-
vidual that represents the cluster is evaluated using the expensive fitness func-
tion. The fitness values of the other individuals in the same cluster are esti-
mated from the representative individual based on a distance measure in a proc-
ess called fitness imitation.

1   Introduction

Many combustion phenomena are kinetically controlled; these may include the for-
mation of pollutants in an exhaust stack, the burning velocity of a premixed flame, or
the conversion of NO to NO2 in a gas turbine combuster.  In order to fully understand
the chemical processes occurring in such phenomena, it is essential that a detailed
chemical kinetic approach be undertaken.

One popular way to model the chemistry of combustion is to use a system of
chemical reactions for which the rates of each reaction are known.  Reaction rate data
for simple fuels, such as hydrogen, is known with a high degree of confidence, see
[1], and thus the combustion of hydrogen at temperatures in excess of 1000K may be
modeled using a simple eight-step reaction mechanism.  However, considerably more
complex fuels, such as kerosene, require more than 1000 reaction steps with over 200
species, see [2].
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Genetic algorithms (GAs) can be used to optimise the reaction rate data of a
chemical kinetics problem. A method utilising GAs is proposed in [3] for the rapid
extraction of the chemical kinetic rate coefficients for a simplified combustion
mechanism from a given set of (detailed) chemical data.  In this method the matching
of heat release and species production rates of the simplified mechanism to those of
an underlying detailed chemical mechanism allows for speedy identification of rate
coefficients for a particular operating condition.

In [4], a powerful inversion technique that is based on a binary-coded GA, is de-
veloped. Here, new Arrehenius reaction rate coefficients for the combustion of a
hydrogen/air mixture in a perfectly stirred reactor are determined.  In this technique,
the output species profiles obtained from an original set of rate constants are repro-
duced by a new different set determined using a GA inversion process.  A kinetic
scheme defined by decoding the genetic data generated by the GA can be used as the
basis for running CHEMKIN’s Perfectly Stirred Reactor (PSR) computer library, see
[5] and [6], and the resulting net species concentration outputs compared to known
data.  The PSR code can be used to establish the net species concentrations of each of
the products based upon different reactor conditions for given estimates to the set of
Arrhenius reaction rate coefficients. The overall goal of the inversion process is to
determine the unknown reaction rate coefficients which both match the given net
species concentrations at different reactor conditions and will, furthermore, correctly
predict the net species concentrations at other reactor conditions.

Many engineering or scientific GA-based optimisation problems, involve the use
of a simulator or analysis code linked to the GA.  It is this code that is used to gener-
ate fitness values for the population of possible solutions produced by the GA.  One
main difficulty in applying GAs to such problems is that a large number of fitness
evaluations, i.e. executions of the simulator or analysis code, are usually required
before a satisfactory result can be obtained.  In general, the computational expense for
a single execution of this code is very high compared to the expense for generating
and manipulating the population of possible solutions.  The main focus of this study
is to the incorporation of clustering techniques into the GA in order to speed up the
optimisation process without any loss in the algorithms performance. The hybrid
clustering-based GAs, are tested on four different fuel/air mixture PSR problems, and
the results are compared with a standard GA. The four test problems are a hydro-
gen/air mixture, a formyl-radical/air mixture, a methane/air mixture, and a kero-
sene/air mixture.  The computational expense increases from the hydrogen/air mix-
ture through to the kerosene/air mixture.

 In this study, a floating point version of the GA has replaced the binary-coded GA
used previously as they have been shown to be especially suited to numerical optimi-
sation on continuous domains, see [7].
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2   The Perfectly Stirred Reactor (PSR) Code

2.1   Introduction

The Perfectly Stirred Reactor (PSR) code is one of three codes available from Sandia
National Laboratories that has been used in conjunction with the CHEMKIN II suite
of software. The PSR code is a FORTRAN computer program that predicts the
steady-state temperature and species composition in a perfectly stirred reactor, whilst
the CHEMKIN suite handles the chemical reaction mechanism and the thermody-
namic properties.

The stirred reactor consists of a small thermally insulated chamber that has both
inlet and outlet ducts. The reactor is characterised by a reactor volume, residence time
or mass flow rate, heat loss or a gas temperature, and an inlet temperature and mixing
composition. High-intensity turbulent mixing of the steady inlet flow of fuel and
oxidiser produces a nearly spatially uniform distribution of contents within the reac-
tor.  Because it is assumed that the mixing process is infinitely fast, the conversion of
reactants to products is controlled solely by chemical reaction rates.

2.2   Reaction Rate Parameters

In general, Yk is used to denote the mole fraction of the kth species, where k = 1,.., K
and K represents the total number of species.  The mole fractions of the kth species at
the inlet are denoted by Y*

k, for k = 1,..,K, and the inlet temperature by T*, whilst the
temperature and composition which exit the reactor are assumed to be the same as
those in the reactor since the mixing in the reactor chamber is intense.

The net chemical production rate of each species results from a competition be-
tween all the chemical reactions involving that species.  It is assumed that each reac-
tion proceeds according to the law of mass action and the forward rate coefficients are
in modified Arrhenius form
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for i = 1,..,NR, where T is the temperature, R = 1.9860 cal mol-1 K-1 is the universal gas
constant, there are NR competing reactions occurring simultaneously, and the rate
equations (1) contain the three parameters Ai, βi, and Ei for the ith reaction.  Ai is the
pre-exponential collision frequency factor, βi is the non-Arrhenius index, and Ei is the
activation energy.   It is the incorporation of clustering techniques into the GA for the
determination of these parameters for each reaction, based upon outlet species mass
fractions alone, which is investigated in this study.
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2.3   Problem Formulation

During this study, results obtained using the clustering-based GAs are compared with
those obtained from a standard GA for four test problems, namely

 (i). Hydrogen/air 9 species and 19 reactions.
 (ii). Formyl-radical/air 22 species and 67 reactions.
 (iii). Methane/air 24 species and 103 reactions.
 (iv). Kerosene/air 97 species and 460 reactions.

For each of the four test problems, an inverse solution procedure is set up in an at-
tempt to recover the species concentration profiles predicted by a previously validated
reaction mechanism over a limited range of reactor conditions.  A total of Ns = 11
different PSR conditions are considered for the first three problems, corresponding to
various changes to the inlet temperature (T = 1000K,..,2000K, with ∆T = 100K),
whilst Ns = 5 different PSR conditions are considered for the kerosene mixture corre-
sponding to T = 1000K, 1040K, 1080K, 1110K, and 1150K.

The inversion process aims to determine the unknown Arrhenius reaction rate co-
efficients (Ai, βi, and Ei in (1)) by searching for the set of reaction rates that gives the
best fit to a given set of data, i.e. the validated reaction mechanism. A ± 25% varia-
tion from the values given in the validated reaction mechanism is used to define the
boundaries within which the GA searches for solutions.  This small variation in the
values of the reaction rate coefficients is sufficient to produce significantly larger
variations in the net species concentrations.

A set of output species concentration profiles is obtained by simulation using a
previously validated reaction mechanism.  If data is simulated for Ns different reactor
conditions, and all K species are measured for each condition, then the data will con-
sist of K⋅N species concentration measurements. A set of Arrhenius reaction rate
coefficients is chosen which gives a best fit to the species concentration measure-
ments.  Such a fitting procedure is accomplished using an optimisation technique that
looks for the maximum of the following function using a GA
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where
• Yjk

calc represents the mole concentration of the kth species in the jth set of reac-
tor conditions using the set of Arrhenius rate coefficients.

• Yjk

orig represents the corresponding original value for the same mole concen-
tration obtained by simulation using a validated reaction rate mechanism.
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3   Optimisation Using the Genetic Algorithm

3.1 The Genetic Algorithm

A floating point number encoded generational GA is used in this study in place of a
previously used binary encoded GA as they have been shown to be better suited to
numerical optimisation on continuous domains.  Previous work incorporating a stan-
dard GA into an optimisation procedure for the recovery of reaction rate parameters
highlighted the following genetic operators as most appropriate for this study, roulette
selection, BLX-α crossover, crossover probability pc = 0.6, and non-uniform muta-
tion, mutation probability pm = 0.6.  A value of α = 0.5 was chosen for the crossover
operator as this strikes an equal compromise between exploration and exploitation of
the search domain.  The maximum number of generations performed by the GA was
set to 1000.  The population size and the size of the offspring pool will be discussed
in section 4.  An elitist strategy is incorporated into the GA with the two fittest indi-
viduals from the previous generation surviving into the next generation.

3.2 An Introduction to Fitness Approximation

A large proportion of real-world engineering or scientific GA-based optimisation
problems involve the use of a simulator or analysis code to compute the population
fitness values.  In many cases, each application of the simulator code takes a non-
negligible amount of time to return a fitness value, and thus for problems that require
a high number of fitness evaluations in order to return a satisfactory solution, the
computational expense becomes a major issue.

Several methods exist that involve the use of approximation models to replace
some or all of the computationally expensive evaluations. The most popular ones
include polynomial modelling whereby the fitness landscape is approximated using a
polynomial function; with quadratic approximation functions being favoured, see [8],
the Kriging model, see [9], neural networks including multi-layer perceptrons and
radial basis function networks, see [10] and Support Vector Machines (SVM), see
[11].

There are two major concerns regarding the use of these models for fitness evalua-
tion.  First, it should be ensured that the algorithm converges to the global optimum
of the original fitness function.  Second, the computational cost should be reduced as
much as possible.  The advantage of such models is that they are in, general, signifi-
cantly less computationally expensive than the original fitness function. A compre-
hensive review of fitness approximation techniques in evolutionary computation can
be found in [12].

The application of many of the more common approximation models such as those
listed in [8] to [11] to problems of a high dimension is not practical as the computa-
tional expense of constructing and executing the model is in many cases comparable
to the original fitness function.  The remaining part of this paper concerns the use of
two clustering algorithms each separately embedded into a standard GA, and each
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used to form an approximate model from which it is possible to significantly reduce
the total number of original fitness function evaluations without loss in performance
for four PSR combustion problems of high dimension.

3.3 Fitness Approximation by Clustering

Clustering is an exploratory data analysis method applied to data samples in order to
discover structures or certain groupings in a data set.  The data samples are grouped
so that they exhibit some degree of similarity within each group. These groups are
called clusters.  There are three general categories of clustering, hierarchical cluster-
ing, partitional clustering, and overlapping clustering.

Perhaps the most important aspect of clustering is the choice of similarity measure.
Most common clustering methods use a distance measure to assign similarity; these
include the city block distance, the Euclidean distance, and the Minkowski distance.
In general, the distance dij between the ith and jth vector data samples xi and xj whose
dimension is n is computed as

( ) m
n

k

m

jkikjiij xxxxdd ∑
=

−==
1

, (3)

where
• m = 1 City block distance
• m = 2 Euclidean distance
• m = 3 Minkowski distance

Hierarchical clustering algorithms construct a structure of clusters and provide a view
of the data at different levels of granularity.  The approach usually takes one of two
approaches, the first is the agglomerative approach, and the second is the divisive
approach, see [13].  There are several commonly used hierarchical clustering algo-
rithms and these include the single-linkage algorithm, the complete-linkage algo-
rithm, the average-linkage algorithm, and Ward’s method.

Partitional clustering algorithms create an unstructured set of clusters whereby the
original data set is partitioned into similar groups based on proximity to one another,
with the view that samples close together are similar.  Each cluster is completely
separate from the other clusters and no overlapping occurs.  There are several com-
monly used partitional clustering algorithms and these include the k-means algorithm,
the hard c-means algorithm, and Forgy’s algorithm, see [13].

Overlapping clustering algorithms create a clustering pattern similar to that of par-
titional clustering with exception that the clusters are allowed to partially overlap on
another.  Commonly used examples of this type of clustering include the fuzzy c-
means algorithm, and the b-clump algorithm.

In this study the k-means partitional clustering algorithm and Ward’s hierarchical
method (also known as the minimum-variance method) are each separately incorpo-
rated into a standard GA and are used to cluster the population at each and every
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generation after initialisation. After clustering, the representative for each cluster is
chosen and its fitness is evaluated using the original fitness function (2).  The fit-
nesses of the remaining individuals in the population are then estimated based on the
Euclidean distance from their cluster representative.

The k-means algorithm clusters the GA population in the following way,

a. At each and every generation after initialisation the GA generates the nchild

individuals in the usual way with the first ncluster individuals forming the
initial cluster sites (this is a random choice due to the individuals being
generated randomly by the GA).

b. Consider the first of the nchild - ncluster remaining individuals and place it in
the cluster whose centroid is closest.

c. Re-compute the centroid of the altered cluster.

d. Repeat steps 2 and 3 until the whole population is clustered.

e. The whole population is now clustered in such a way that each individual
is closer to their respective cluster centroid than to any other.

Ward’s method clusters the GA population in the following way

a. Each of the nchild individuals generated by the GA at each generation forms
an initial cluster site.

b. The number of cluster sites is reduced one at a time until ncluster clusters are
remaining.

c. At each cluster reduction, the method merges the two clusters resulting in
the smallest increase in the total sum of squares of the distances of each
individual to its respective cluster centroid.  This total sum increases
monotonically as the number of clusters decreases.

d. Sites clustered at a previous clustering step are never unmerged.

In problems where the components of the vector data sample differ by several or-
ders of magnitude, as is the case with PSR or PREMIX modelling it is necessary to
scale the components such that they all belong to [0,1].  This is accomplished in the
following way:

lowerupper

lower
~

kk

kk
k

xx

xx
x

−
−= (4)

where, xk

upper and xk

lower are the upper and lower bounds respectively of the search space
for the kth component of the vector data sample.

There are many ways to choose the cluster representatives, but the easiest is to
randomly select an individual from those present in each of the clusters.  The fitness
of the cluster representative is then evaluated using the original fitness function (2).



Efficient Clustering-Based Genetic Algorithms in Chemical Kinetic Modelling      939

The fitness of the remaining individuals is estimated from the their cluster represen-
tative in proportion to the Euclidean distance from the representative. Using the
Euclidean distance metric, the distance from the cluster representative of the pth clus-
ter to the qth individual in the pth cluster is computed as follows:

( ) 2

1

2
reprep ~~, ∑

=
−=

n

k

q
pkpk

q
pp xxxxd (5)

In order to make the clustering model independent of the dimension of the prob-
lem, and thus ensuring its effectiveness on the four test problems, which vary from a
dimension of 57 for hydrogen through to 1380 for kerosene, the Euclidean distances
need to scaled such that they all belong to [0,1].  This is accomplished by dividing the
Euclidean distance given in (5) by the maximum theoretical distance as follows:

( ) ( )
2

rep
rep ,

,
~

n

xxd
xxd

q
ppq

pp = (6)

The final stage in the application of the clustering algorithm is to compute the indi-
rect fitness of a non-representative cluster individual based on its distance from the
cluster representative.  A simple but effective form for this indirect evaluation is as
follows:
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4 Numerical Results

As outlined in section 2.3 the two clustering-based GAs will each be tested on four
different mixture problems and their results compared to those obtained with a stan-
dard GA (s1GA) that uses population sizes of npop = 50 and nchild = 60.  The k-means
clustering GA (kmGA) and the Ward’s method GA (WmGA) both use population
sizes equal to those of the s1GA, and a value of ncluster = 10 is chosen in each case.
This value for ncluster strikes a good compromise between the quality of solution ob-
tained and the overall computational requirements of the GA. The computational
expense of clustering the population and evaluating the indirect fitnesses at each gen-
eration is negligible for both the kmGA and the WmGA when compared to the cost of
evaluations involving the original fitness function (2).  Thus, since only ncluster = 10
evaluations of the original fitness function (2) are made at each generation for both
the kmGA and the WmGA, an approximately six-fold decrease in operational run-
time is observed over the s1GA for an equivalent number of generations performed.
It is worth noting that the clustering of the population in the WmGA is significantly
more computationally demanding than that in the kmGA but is still negligible when
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compared with original fitness function evaluations, with the extent of this negligibil-
ity becoming more pronounced as the number of species increases.  The results from
the clustering-based GAs are also compared to those obtained from a second standard
GA (s2GA) that uses population sizes of npop = 8 and nchild = 10.  The computational
requirements of the s2GA are approximately comparable to both the kmGA and the
WmGA as all three perform an equal number of evaluations of the original fitness
function (2) per generation.

Figures 1(a), 1(b), 1(c), and 1(d), corresponding to the hydrogen-PSR problem, the
formyl-PSR problem, the methane-PSR problem, and the kerosene-PSR problem
respectively, present evolutions of the average fitness value of the fittest individual at
each generation as a function of generation number for the four different GAs used.
In Figure 1(a), the kmGA clearly outperforms the other algorithms attaining a signifi-
cantly higher fitness value after completing 1000 generations. For this problem the
overall performance of the WmGA and the s1GA are comparable as they both attain a
similar fitness value after 1000 generations.  The overall performance of the s2GA is
significantly worse than any of the other three algorithms due in most part to the
reduced population sizing used in this algorithm.  With only nchild = 10 individuals
created at each generation in comparison to nchild = 60 for the other algorithms; the
s2GA is at a significant disadvantage when it comes to effectively searching the solu-
tion domain.  This performance trend for the s2GA can also clearly be observed in
Figures 1(b), 1(c), and 1(d).

Similar trends to those observed in Figure 1(a) can also be observed in Figure 1(b)
with the exception that now both clustering-based GAs exhibit a marked performance
gain over the standard GAs.  It is worth noting that when moving from the hydrogen
problem (Figure 1(a)) to the formyl problem (Figure 1(b)), corresponding to an in-
crease in the dimension of the solution domain, the relative performance of the kmGA
with respect to the WmGA decreases.  Figures 1(c) and 1(d) show that the WmGA
now outperforms the kmGA as well as the standard GAs, demonstrating that this is a
more suitable clustering algorithm when dealing with vector data sets of very high
dimension.

Figures 2(a), 2(b), 2(c), and 2(d), corresponding to the same sequence of test
problems as those in Figure 1, present the average percentage error in predicting the
mole fractions of selected output species at a given temperature based on reaction
mechanisms generated by the various GAs. The prediction errors indicate the extent
to which each of the four GA-optimised mechanisms can recover the output species
mole fractions that are produced from a simulation experiment involving a previously
validated original reaction mechanism. All four GA-optimised mechanisms are in
very good agreement with the original validated mechanism for the first three test
problems at temperature T = 1500K as shown in Figures 2(a), 2(b), and 2(c).  The
agreement in the case of the kerosene problem for the same output species is in gen-
eral, not as good; see Figure 2(d).  This could be due in part to the difficulty of si-
multaneously recovering the mole fractions of 97 output species as is required for the
kerosene mechanism.
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Fig. 1.  The average fitness value of the fittest individual at each generation based on six dif-
ferently seeded GA runs as a function of generation number for the k-means genetic algorithm
(kmGA), the Ward’s method genetic algorithm (WmGA), the first standard genetic algorithm
(s1GA), and the second standard genetic algorithm (s2GA).  Results are displayed for four
different fuel/air mixtures, (a) hydrogen/air, (b) formyl-radical/air, (c) methane/air, and (d)
kerosene/air.

The ability of the s1GA-optimised mechanism to recover the output species mole
fractions for each of the four problems is in general not as good as that of the other
three mechanisms, and this accounts for its relative lack of performance as shown in
Figure 1. Similar validation results, although not presented here, are observed at the
other PSR operating conditions.
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Fig. 2.   The average percentage error in predicting the mole fractions of various output species
based on reaction mechanisms generated by the k-means genetic algorithm (kmGA), the
Ward’s method genetic algorithm (WmGA), the first standard genetic algorithm (s1GA), and
the second standard genetic algorithm (s2GA).  Results are displayed for four different fuel/air
mixtures, (a) hydrogen/air at temperature T = 1500K, (b) formyl-radical/air at temperature T =
1500K, (c) methane/air at temperature T = 1500K, and (d) kerosene/air at temperature T =
1080K.

5 Conclusion

In this study two efficient clustering-based genetic algorithms (GAs) have been ap-
plied to the problem of optimising reaction rate parameters for the combustion of four
different fuel/air mixtures in a perfectly stirred reactor (PSR) over various operating
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conditions.  The clustering algorithms divide the entire population at each generation
into groups based on a distance similarity measure.  A representative is chosen for
each group and its fitness is calculated directly using the computationally expensive
original PSR fitness function.  The fitness values of the remaining individuals in each
cluster are calculated indirectly from their cluster representative, thus significantly
reducing the total number of original PSR fitness function evaluations.

The clustering-based GAs are shown to outperform a standard GA in simulated
experiments over the four test problems, whilst at the same time yielding an approxi-
mate six-fold reduction in the computational time required to complete an equal
number of generations.

There remains the potential for future research applying clustering-based GAs to
PSR combustion.  One key area of consideration is the choice of similarity measure.
At present, a Euclidean distance measure is used to assign similarity amongst indi-
viduals, but perhaps a more suitable choice involves using the rates of production
associated with each species.  It is these rates of production that are inexpensively
calculated within the PSR program and then used to expensively determine the output
species mole fractions.  It is hoped that such a change of similarity measure will bring
the clustering closer to the physical nature of PSR combustion.
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